K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

bạn là fan của Cris phải ko

3 tháng 2 2019

Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta có:

\(A=\frac{a^2}{a+1}+\frac{b^2}{b+1}\ge\frac{\left(a+b\right)^2}{a+b+2}=\frac{1}{1+2}=\frac{1}{3}^{\left(đpcm\right)}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=1\\\frac{a}{a+1}=\frac{b}{b+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=1\\ab+a=ab+b\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)

Vậy ...

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

14 tháng 4 2021

undefined

31 tháng 8 2019

\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)

Tương tự cộng lại quy đồng ta có đpcm 

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\text{VT}=\sum \frac{a+1}{b^2+1}=\sum [(a+1)-\frac{b^2(a+1)}{b^2+1}]=\sum (a+1)-\sum \frac{b^2(a+1)}{b^2+1}\)

\(=6-\sum \frac{b^2(a+1)}{b^2+1}\geq 6-\sum \frac{b^2(a+1)}{2b}=6-\sum \frac{ab+b}{2}\)

\(=6-\frac{\sum ab+3}{2}\geq 6-\frac{\frac{1}{3}(a+b+c)^2+3}{2}=6-\frac{3+3}{2}=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

NV
19 tháng 4 2022

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

19 tháng 4 2022

à mình quên < hặc =1/2

1 tháng 5 2020

Có \(\sqrt{\left(3a+b\right)\left(a+3b\right)}\le\frac{3a+b+a+3b}{2}=2\left(a+b\right)\)

Mà 4ab=\(\left(2\sqrt{ab}\right)^2=\left[\left(\sqrt{a}+\sqrt{b}\right)^2-\left(a+b\right)\right]^2=\left[1-\left(a+b\right)\right]^2\)

Do đó nếu đặt a+b=t. Khi đó a+b \(\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2}=\frac{1}{2}\)

hay \(t\ge\frac{1}{2}\)

Cần chứng minh: \(3\left(a+b\right)^2-\left(a+b\right)+4ab\ge\frac{1}{2}\sqrt{\left(3a+b\right)\left(a+3b\right)}\)

\(\Leftrightarrow3t^2-t+\left(1-t\right)^2\ge\frac{1}{2}\cdot2t\)

\(\Leftrightarrow4t^2-4t+1\ge0\)

\(\Leftrightarrow\left(2t-1\right)^2\ge0\)luôn đúng với mọi t \(\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2t-1=0\\3a+b=3b+a\\\sqrt{a}+\sqrt{b}=1\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=\frac{1}{2}\\a=b\\\sqrt{a}+\sqrt{b}=1\end{cases}\Leftrightarrow}a=b=\frac{1}{4}}\)

7 tháng 8 2021

Ta có \(-\dfrac{4ab^2}{4b^2+1}\ge-\dfrac{4ab^2}{2\sqrt{4b^2}}=\dfrac{4ab^2}{4b}=ab\)

\(-\dfrac{4a^2b}{4a^2+1}\ge-\dfrac{4a^2b}{2\sqrt{4a^2}}=\dfrac{4a^2b}{4a}=ab\)

Mà \(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}=\dfrac{a\left(4b^2+1\right)}{4b^2+1}-\dfrac{4ab^2}{4b^2+1}+\dfrac{b\left(4a^2+1\right)}{4a^2+1}-\dfrac{4ab^2}{4a^2+1}\ge a-ab+b-ab=4ab-2ab=2ab\)

Mà \(a+b=4ab\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=4\ge\dfrac{2}{2\sqrt{ab}}\Rightarrow4\sqrt{ab}\ge2\Rightarrow ab\ge\dfrac{1}{4}\)

\(\Rightarrow2ab\ge\dfrac{1}{2}\Rightarrow\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)

Dấu "=" \(\Leftrightarrow a=b=\dfrac{1}{2}\)

 

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:

ĐK $\Rightarrow \frac{1}{a}+\frac{1}{b}=4$

Đặt $\frac{1}{x}=a; \frac{1}{y}=b$ thì bài toán trở thành:

Cho $a,b>0$ thỏa mãn $a+b=4$. CMR:

$P=\frac{x^2}{y(x^2+4)}+\frac{y^2}{x(y^2+4)}\geq \frac{1}{2}$

-----------------------

Áp dụng BĐT AM-GM:

$\frac{x^2}{y(x^2+4)}+\frac{y(x^2+4)}{64}\geq \frac{x}{4}$

$\frac{y^2}{x(y^2+4)}+\frac{x(y^2+4)}{64}\geq \frac{y}{4}$

Cộng theo vế và rút gọn:

$P\geq \frac{3(x+y)-xy}{16}=\frac{12-xy}{16}$

Mà $xy\leq \frac{(x+y)^2}{4}=4$

$\Rightarrow P\geq \frac{12-4}{16}=\frac{1}{2}$

Ta có đpcm.